The facile flow-injection spectrophotometric detection of gold(III) in water and pharmaceutical samples using 3,5-dimethoxy-4-hydroxy-2-aminoacetophenone ison -tinoy hydrazone (3,5-DMHAAINH)

S. Hari babu, K. Suvardhan, K. Suresh Kumar, K.M Reddy
D. Rekha, P. Chiranjeevi*
Environmental Monitoring Laboratory, Department of Chemistry, S.V. Unive, , Tirupati 5^ १२, AP,

Received 1 November 2004; received in revised form 8 January

Abstract

A simple, sensitive and rapid flow-injection spectrophotometric method w. leveloped fo he determination of trace amounts of $\mathrm{Au}($ III $)$ in aqueous dimethylformamide (DMF). The method is based on formation of Au (3.5 , MHAAINH) $)_{3}$ complex. The optimum conditions for the chromogenic reaction of $\mathrm{Au}(\mathrm{III})$ with 3,5 -DMHAAINH Stin and the corored (reddish brown) complex is selectively monitored at $\lambda_{\max } 490 \mathrm{~nm}$ at pH 6.0 . The reaction and flow conditions of e full mental design were optimized. The detection limit (2 s) of $0.1 \mu \mathrm{~g} \mathrm{l}^{-1} \mathrm{Au}(\mathrm{III})$ was obtained at a sampling rate of 15 samples h $\quad \mathrm{rr}$ lawrs obeyed over the range of $0.30-4.00 \mu \mathrm{~g} \mathrm{ml}^{-1}$. The molar absorptivity and Sandell's sensitivity were $3.450 \times 1 \quad 0.0050 \quad \mathrm{ml}^{-1}$, respectively. Job's method of continuous variation and stability constants corresponding to these maxima was de nined a found te $9.3 \times 10^{15}(1: 3, \mathrm{M}: \mathrm{R})(\mathrm{M}$, metal; R, reagent). The detailed study of various interferences confirmed the high sele ty of the cveloped n hod. The method was successfully applied for the determination of trace amount of $\mathrm{Au}(\mathrm{IIII})$ in water and pharpaceu al pres. alts obtained were in agreement with the reported methods at the 95% confidence level.
© 2004 Elsevier B.V. All rights res
Keywords: 3,5-Dimethoxy-4-hydroxy-2-amino tophenone isonicotinoyl hydrazone (3,5-DMHAAINH); Dimethyl formamide (DMF); Au(III); Flowinjection spectrophotometer (F^{V}, Water and pharn utical samples

1. Introduction

The raration reconcen ion and determination process or ce me different matrices especially in water sam a are mainly based on the utilization and application of nun rove of available techniques. These include the liquid and solid ase extraction (SPE), ion-exchanger and co-precipitation by metal hydroxides [1-2]. Liquid-liquid extraction (LLE) of different metal ions was widely employed in chemistry and industry for several years [3].

[^0]Several sensitive spectrophotometric techniques were proposed for the determination of $\mathrm{Au}(\mathrm{III})$ in recent years. But many of them involve ternary system [4-10] or surfactant effects [11-16] or oxidizing agents [17-22]. The reported methods suffer from a series of disadvantages such as high consumption of reagents, less sensitivity, low selectivity and interference from foreign ions. The aim of present work is to develop a facile, rapid, selective, sensitive and reproducible spectrophotometric flow-injection method for the determination of ultra trace levels of $\mathrm{Au}(\mathrm{III})$ in aqueous medium by coupling with 3,5-di methoxy-4-hydroxy-2-aminoacetophenone isonicotinoyl hydrazone (3,5-DMHAAINH) at pH 6.0 in water and pharmaceutical samples.

2. Experimental

2.1. Synthesis of 3,5-dimethoxy-4-hydroxy-
 2-aminoaceptophenone isonicotinyl hydrazone (3,5-DMHAAINH)

3,5-DMHAAINH is not commercially available, and was synthesised according to the method described previously [22]. 3,5-Dimethoxy-4-hydroxy-2-aminoacetophenone (3,5DMHAA) (7.65 g) was mixed with $5 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{ml})$. The solution was stirred continuously in a water bath at $5^{\circ} \mathrm{C}$ for 30 min to under go condensation process. Pure form of isonicotinic acid hydrazide (INH) dissolved in aqueous methanol $(10 \mathrm{ml})$ was added to the condensed reaction mixture and resulting solution were stirred at $25-30^{\circ} \mathrm{C}$. Finally, the reaction mixture was mixed with distilled water (50 ml) and 3,5DMHAAINH precipitated as a white solid powder. The yield was 78.9% and melting point of the product is $187-190^{\circ} \mathrm{C}$. The structure of color forming reagent is shown in Fig. 1(a).
valve provided with a $50 \mu \mathrm{l}$ loop. A HITACHI U 2001 spectrophotometer equipped with a flow-through microcells and connected to a computer (IPX Spectra SYSTEM SN4000) incorporated to a PC 1000 software program was used for absorbance measurements. The pH measurements were made with a Elico Digital pH meter.

2.3. Reagents

All reagents used were of analyt rent grade and solutions were prepared with deig ed distilh water.
$\mathrm{An} \mathrm{Au}(\mathrm{III})$ stock solution ($0, \mathrm{M}$) was prep ed by dissolving 0.571 g of chloro aur acid hnson Mat y, Materials Technology, U.K.) in al of 0.1 M droch ic acid and solution is made up to mark y^{\wedge} dists ater in 100 ml volumetric flask. Th vorkin standard sorations were prepared by dilutin ne sto Iution to appropriate volume with distilled ater.
$0.02 \mathrm{M}, \mathrm{s}$ nethoxy-4-1 xy-2-aminoacetophenone isonicotimoyl hyd one was prepared by dissolving 0.66 g of 3,5-HAAINH in ${ }^{\circ} 0 \mathrm{ml}$ distilled water. Finally, 0.01 M nethyl formamide (D, FF), 0.1 M HCl and 5 N NaOH soations were ud for present studies.

Phosphate ffer solution of pH 6.0 was prepared by a ing conce lated $\mathrm{H}_{2} \mathrm{SO}_{4} 3.4 \mathrm{ml}-250 \mathrm{ml}$ distilled water in à ask. The mono sodium dihydrogen phosphate monohydrate (25 g) was added and the flask, shaken until the

2.2. Instrumentation

A high pressure liquid chromatography (Perkin-Elmer Series 3) pump furnished with stainless-steel tubing was used to propel the samples and reagent solutions. Sar were injected into the carrier stream by a Rheodyne injed on

dissolution was completed. The solution was other dilute 500 ml .

2.4. Procedure

Fig. 2 indicates a scheme of the FIA sparatu br the determination of $\mathrm{Au}(\mathrm{III})$ in water an ${ }^{2}$ han cal sant ples. The method was tested witb nodel sol ans before its application to real samples $\quad 50 \mu \mathrm{l}$ volum f sample solution was injected int the re nt carrier solution ($\mathrm{NH}_{4} \mathrm{Cl}$-phosphate buffer y adjusting in es A and B. The mixed solution was sen a reaction coil, the lored solution was carried to the fl injectig opectrophotometric detector cell in which the ab bar of the product, $\mathrm{Au}(\mathrm{III})-(3,5-$ DMHAAINH vas so tively n sured at 490 nm and recorded inuo ly on co puter. In the optimization studies le param ers studio were reagent concentration, pH , flo ate, r and method evaluation.

2.4.1. Determa tion of $A u(I I I)$ in natural water samples

Different watensamples (Tap water, river water, spring water) were collected from various places around Tirupati area. The samples were stored at $0-5^{\circ} \mathrm{C}$ in metal free polyethylene bottles. Water samples were filtered through Whatman filter paper no. 41 and the clean solution is collected into a 100 ml standard flask. The contents are diluted to the mark with distilled water. Ten milli litre of this solution is further diluted to get working solution for determination of $\mathrm{Au}($ III) as described in procedure and compared with the reported method in literature [23]. The results were summarised in Table 2.
y capsules of Rheumartho with gold (Sri Baidyanath Ayurvedic Bhavan Ltd., Nagpur, India), K.K. Forte with gold (Kalpa Pharma, Vijayawada, India), Auranofin (Reddy' Laboratories, Hyderabad, A.P., India) were ground well and dissolved in minimum volume of concentrated HCl and evaporated to dryness. The residue is re-dissolved in 10 ml of concentrated HCl and diluted to 50 ml . It is filtered through Whatman filter paper no. 41 and the clean solution is collected into a 100 ml standard flask. The contents were diluted to the mark with distilled water. Ten millilitres of this solution is further diluted to get working solutions for determination of $\mathrm{Au}(\mathrm{III})$ in pharmaceutical samples as described in aforesaid procedure. The results were presented in Table 3 and compared with the reported method [20].

3. Result and discussion

Under the experimental condition, the absorption spectra of (3,5-DMHAAINH) and Au(III)-(3,5-DMHAAINH) 3 complexes were scanned. The absorption maximum of 3,5DMHAAINH versus reagent blank was measured at 360 nm , where as $\mathrm{Au}(\mathrm{III})-(3,5-\mathrm{DMHAAINH})_{3}$ complex gave an absorption peak at 490 nm . The contrast (bathochromic shift) of the two peaks was 130 nm , and could be obviously distinguished. Thus, the absorption peak at 490 nm was chosen as the determination of wave length for $\mathrm{Au}(\mathrm{III})-(3,5-\mathrm{DMHAAINH})_{3}$ complex as shown in Fig. 3. 3,5-DMHAAINH structure (Fig. 1(a)) is a blend of hydrazone

Fig. 3. Absorption spectrum of (a) 3,5-DMHAAINH vs. Reagent (360 nm), and (b) Au(III)- 3,5 ,
functional group. Therefore, $\mathrm{Au}(\mathrm{III})-(3,5-\mathrm{DMHAAINH})_{3}$ may be considered as $1: 3$ ligand (M:R) (M, metal; R, reagent). This reagent is not exploited much for the spectrophotometric determination of metal ion. The reagent solution is found to be stable for 72 h . The $\mathrm{p} K$ value is determined by recording the UV-vis spectra of 0.02 M solution of the reagent at various pH values. The value of deprotonation of 3,5-DMHAAINH is found to be 2.6 pK value assigned due to the deprotonation of imine $(-\mathrm{NH})$ through enolization. The complex form reaction between $\mathrm{Au}(\mathrm{III})$ with 3,5-DMHAAINH has it en studied in detailed. Based on the composition of the comp as determined by Job's and molar ratio metb he struc ture in Fig. 1(b) is suggested for $\mathrm{Au}(\mathrm{III})-(3) \quad \mathrm{MH} F \quad \mathrm{INH})_{3}$ complex.

3.1. Analytical parameters

Beer's law was obeyed in th concentration range $0.30-4.00 \mu \mathrm{~g} \mathrm{ml}^{-1}$ of a (III). The $\mathrm{m} \quad \mathrm{r}$ absorptivity of complex at 490 nr and at pH 6.0 m calculated as $3.45 \times 10^{4} \mathrm{M}$. Sa ell's sep ivity of the method was found to be $0.0050 \mu \mathrm{~g} \mathrm{mi}$ T correlati coefficient (γ) for the experiment ta is 998. Tb composition of the complex det Alined ing Jou anuous variation method indicat the form ion of $1: 3$. mplex. The stability constants corres ${ }^{\text {din }} 10$ urima were determined and found to be $9.3 \quad 0^{15}(1: 3, \mathrm{M}: \mathrm{R})$.

3.2. Optimizatıon of flow system

3.2.1. Effect of pH

The effect of pH on the peak height of $\mathrm{Au}(\mathrm{III})$ at different concentrations was investigated with a fixed $0.02 \mathrm{M} 3,5-$ DMHAAINH concentration in the reagent carrier solution. The pH of phosphate buffer in the reagent carrier solution was changed over a range of 3.0-7.0 and the peak height were measured for each concentration level of $\mathrm{Au}(\mathrm{III})$. At all concentration levels of $\mathrm{Au}(\mathrm{III})$, maximum peak heights were
found betwe pH 5.0 and 9 refore, a pH 6.0 for the phosphat afto vstem was c en throughout in the study.

The effect of the flow-rate on the peak height was studied the range or $5-2.0 \mathrm{ml} \mathrm{min}^{-1}$. The peak height decreased th the increa ng of the flow-rate. Taking into consideration of stabili of the pump, peak shape and sampling time, the flom of the reagent carrier solution was adjusted to $\mathrm{ml} \mathrm{min}^{-1}$.

3.2.3. Sample volume

The influence of the sample volume on the absorbance was investigated by injecting different volumes (200-270 $\mu \mathrm{l}$) of $\mathrm{Au}(\mathrm{III})$ standard solutions into the system at the $1.0 \mathrm{ml} \mathrm{min}^{-1}$ flow-rate. The injection volume has a significant effect, yielding increased peak height and reproducibility with increase in the injection volume. However, increasing the injection volume widens the sample zone and lowers the sampling rate, so that $250 \mu \mathrm{l}$ was taken as a compromise.

3.2.4. Effect of 3,5-DMHAAINH concentration

The effect of concentration of 3,5-DMHAAINH, in the reagent carrier solution, on the peak height was investigated at pH 6.0 and a flow-rate of $1.0 \mathrm{ml} \mathrm{min}^{-1}$, by using 2.1 and $3.4 \mu \mathrm{l}^{-1} \mathrm{Au}(\mathrm{III})$ solutions. The concentrations of $3,5-$ DMHAAINH was varied over the range $0.001-0.10 \mathrm{M}$. Maximum peak height was obtained at a concentration of 0.02 M 3,5-DMHAAINH as color developing reagent in the carrier solution for lower concentration level of $\mathrm{Au}(\mathrm{III})$ in the sample solution.

3.2.5. Calibration graph

The equation of a typical calibration is $p=5.32 c+4.94$, $r^{2}=0.9993$ (p, peak height; c, concentration). The calibration graph was obtained at the optimum working conditions: flow-rate $1.0 \mathrm{ml} \mathrm{min}^{-1}, 3,5-\mathrm{DMHAAINH}$ concentration 0.02 M , volume injected $250 \mu \mathrm{l}$ and carrier stream
$\mathrm{NH}_{4} \mathrm{Cl}$-phosphate buffer solution in ratio $10: 40(\mathrm{v} / \mathrm{v})$ at pH 6.0.

3.3. Method evaluation

The proposed flow injection method was critically evaluated with regard to reproducibility, accuracy, detection limit and sample frequency.

3.3.1. Reproducibility

To test the reproducibility of the FIA, four repetitive analysis cycles of each sample were run. A\%R.S.D. in the range 2.01-3.76 was obtained as shown in Tables 2 and 3, respectively.

3.3.2. Accuracy

The accuracy of the proposed flow injection method was evaluated by comparing the results with those obtained by the reported methods [20,23]. The results shown in Tables 2 and 3 reveals that the good correlation between the two methods indicative of present method is more sensitive than the reported methods in literature [20,23].

3.3.3. Sampling frequency

The experimental period for one complete analytical cycle was 240 s long giving an overall sampling rate of 15 samp h^{-1}.

3.3.4. Detection limit

Under optimized conditions the detectio mit fo letermination of $\mathrm{Au}(\mathrm{III})$ by flow injection met (signal moise ratio $=2$) obtained was $0.10 \mu \mathrm{~g}^{-1}$ for 250 in ation voiume $\mathrm{Au}(\mathrm{III})$ ion solution.

3.3.5. Effect of foreign specie

Several cations and ats, as poten interferents for different sample matri were studied in det. Table 1 summarises the toleran amits of erfering ions in the determi-

Table 1
Tolerance limits of non-target ions in the determination of $\mathrm{Au}(\mathrm{III}) \mathrm{pH}=6.0$, amount of $\mathrm{Au}(\mathrm{III})=100 \mu \mathrm{~g} \mathrm{l}^{-1}$

Ion	Tolerance limit ($\mu \mathrm{g} \mathrm{ml}^{-1}$)	Ion	Tolerance limit ($\mu \mathrm{g} \mathrm{ml}^{-1}$)
EDTA	37	$\mathrm{Pd}^{+2 \mathrm{a}}$	Interferes
Citrate	496	Ce^{+4}	28
Bromate	563	U^{+6}	30
Thiourea	836	Tl^{+3}	36
Oxalate	968	Fe^{+3}	40,1000 ${ }^{\text {a }}$
Phosphate	1045	$\mathrm{Ag}^{+} \quad 50$	
Iodide	1270		
Thiosulphate	1375		5
Ascorbate	1780	\square^{+4}	59
Tartrate	1800	L	
Fluoride	1900	Cu^{-}	
Nitrate	3400	Mo^{+6}	
Chloride $3850 \quad \mathrm{Pt}^{+4}$			
Sulphate	529	Ca^{+}	110
			112
			120
		Zn^{+2}	120
		Al^{+2}	130
		Ni^{+2}	159
		Mg^{+2}	264
		Sn^{+2}	295
		Ba^{+2}	330

tion of $100 \mu \mathrm{~g} \mathrm{l}^{-1} \mathrm{Au}(\mathrm{III})$. The tolerance limit was taken tir nount, which caused an error of $\pm 2 \%$ at the peak height. Almost all of the ions examined did not interfere with the $\mathrm{Au}(\mathrm{III})$. Of the ions tested, the only negligible interference were from $\mathrm{Pd}(\mathrm{II}), \mathrm{V}(\mathrm{V})$, and $\mathrm{Fe}(\mathrm{III})$ at the amount of $1000 \mu \mathrm{~g} \mathrm{l}^{-1}$. However, $\mathrm{Pd}(\mathrm{II}), \mathrm{V}(\mathrm{V})$ and $\mathrm{Fe}(\mathrm{III})$ interference can be successfully avoided by masking them with suitable amount of fluoride.

3.3.6. Application

To evaluate the applicability of the proposed flowinjection method, it was applied to the determination of

Sample	Re	by present				\% Re	very of Au^{3+} by	ported metho		
	,	Found $\mu \mathrm{g} 1^{-1}$	Recovery \%	RSD ${ }^{\text {a }}$	F-test ${ }^{\text {b }}$	t-test ${ }^{\text {c }}$	Added $\mu \mathrm{g} \mathrm{l}^{-1}$	Found $\mu \mathrm{g} 1^{-1}$	Recovery \%	RSD ${ }^{\text {a }}$
Synthetic samp	12.0	$\begin{aligned} 11.98 & \pm 0.20 \\ 7.48 & \pm 0.30 \end{aligned}$	99.80 ± 0.40	2.24	1.13	0.32	10.0	9.10	91.0 ± 0.50	2.12
Tap water	24.0	$\begin{aligned} 23.92 & \pm 0.40 \\ 3.15 & \pm 0.10 \end{aligned}$	99.60 ± 0.20	2.01	1.74	0.54	20.0	19.80	99.0 ± 0.20	3.36
River water	48.0	$\begin{aligned} 47.87 & \pm 0.50 \\ 1.41 & \pm 0.20 \end{aligned}$	99.70 ± 0.10	4.13	1.74	0.61	30.0	29.90	99.66 ± 0.40	2.29
Spring water	96.0 -	$\begin{aligned} 95.87 & \pm 0.10 \\ 2.64 & \pm 0.80 \end{aligned}$	99.86 ± 0.30	2.78	1.32	0.59	40.0	39.80	99.50 ± 0.30	3.76
Laboratory water	192.0	191.55 ± 0.30	99.76 ± 0.20	2.50	1.01	0.28	50.0	49.2	98.40 ± 0.80	2.51

[^1]Table 3
Determination of gold(III) in various pharmaceutical samples using 3,5DMHAAINH with flow-injection spectrophotomeric method

Sample	Amount of gold $\left(\mu \mathrm{g} \mathrm{ml}^{-1}\right)$		Relative error (\%)
	Present method $^{\mathrm{a}}$	Reported method [20]	
Rheumartho with gold	1.02	1.01	-0.99
	1.82	1.84	1.08
	2.13	2.11	-0.94
	3.17	3.13	-1.27
K.K. Forte with gold	0.42	0.44	4.54
	0.87	0.86	-1.16
	1.20	1.24	3.22
Auranofin (tablet)	2.49	2.45	-1.63

${ }^{\text {a }}$ Four individual determinations.
$\mathrm{Au}(\mathrm{III})$ in water and pharmaceutical samples. The samples collected from different sources were filtered and then directly injected into the FIA. The obtained results was compared with the reported methods [20,23] in terms of Student's t-test and F-test. The analytical data summarised in Tables 2 and 3 suggest that the percentage of recovery of $\mathrm{Au}(\mathrm{III})$ from water and pharmaceutical samples ranges from 98.0 to 99.90% which is more reliable and sensitive than the methods reported in literature.

4. Conclusion

3,5-DMHAAINH is one of the most clective reagent for the flow-injection spectrophotome detery ation of $\mathrm{Au}(\mathrm{III})$ ion. The newly synthesised lor a el ng reagu. is more economical and easy to pr^{\prime} are in an enary laboratories. The FIA is highly facil ctive, sensit and rapid than the methods reported insteratu, Because of ne stable

complex of $\mathrm{Au}(\mathrm{III})-(3,5-\mathrm{DMHAAINH})_{3}$ made to study in environmental samples may be extended for the routine analysis of pharmaceutical samples of bulk and formulations.

References

[1] B.K. Puri, M. Satake, G. Kano, S. Usami, Anal. Chem. 59 (1987) 1850.
[2] P. Buba, P.G. Willmer, Fresenius J. Anal, Chom. 329 (1987) 1850.
[3] EPA-60014-79-02, Method for chemic ratysi water and waste, Environmental protection Agency esearch Tria e Park, NC, 1983.
[4] G. Xue, Guijinshu 10 (1989)40.
[5] M. Liang, C. Wang, Y. 7 g, Shanxi xue Xueb, Ziran Kexueban 19 (1996) 297.
[6] F.M. Elzowawy, M.F shahat, A Mohamı M.T.M. Zaki, Analyst 120 (1995) 54,
Z.B. Li, J.L. Yg, Q. Mikrochip Acta 116 (1994) 219.
[8] Z. Li, X. O chongning, Liu, Fe Kexue Xuebao 14 (1998) 305.
[9] Z. Li Duch I. Wang, Q. A, Fenxi Shiyanshi 17 (1998) 8.
[10] M. Liang, Z. Wa hengye, Z. Youxian, Shanxi Daxue Xuebao, Kexueban 19 (6) 297.
S. Liu, B. Xia, Youkuaroye 7 (1988) 24.

2] S. Yin, Fenxi Shiyanshi 7 (1988) 64.
3] G. Ma, Yejî venxi 8 (1988) 52.
W. Wang, J. hau, Xuaxue Fexie 24 (1988) 171.
[1 V Yu, You angye 15 (1996) 112.
[16] in aak, Chemia analilyezna 37 (1992) 683.
417] J. Bai, Taiyuvan Gangyae Daxue Xuebao 20 (1989) 73. Mori, H. Tominaga, Y. Kujita, T. Matsue, Anal. Lett. 30 (1997)
[19] A.A.Y. Elsayed, Bull. Chem. Soc. Jpn. 67 (1994) 3216.
[20] Z. Marczenko, Spectro photometric determination of Elements, John Wiley and Sons Inc., New York, 1976, pp. 283.
[21] M.A. Kabil, S.E. Ghazy, M.A. Mastafa, A.A. Elasmy, Fresenius J. Anal. Chem. 349 (1994) 775.
[22] P.T. Sah, S.A. Peoples, J. Am. Pharm. Assoc. Sci. Edn. 43 (1954) 513.
[23] M. Bagheri, M.H. Mashhadizadeh, S. Razee, Talanta 60 (2003) 839.

[^0]: * Corresponding author. Tel.: +91 877 2250556; fax: +91 8772261274.

 E-mail address: chiranjeevi_sai@ yahoo.co.in (P. Chiranjeevi).

[^1]: ${ }^{\text {a }}$ For four individual determinations.
 ${ }^{\text {b }}$ Tabulated F-value for $(4,4)$ degrees of freedom at $p(0.95)$ is 4.11 .
 c Tabulated t-value for 4 degrees of freedom at $p(0.95)$ is 1.53 .

